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1. Introduction 

This report explains the key concepts used in a software-defined radio (SDR). 
Important concepts for SDRs are frequency and phase translation. Complex 
exponentials provide a convenient way to translate frequency and shift phase. 
Herein, we review complex numbers, power spectral density, Dirac delta function, 
Fourier transform, analytic functions, and the Hilbert transform.  

Section 2 introduces the concepts and tools required to understand the Hilbert 
transform.  We begin by discussing the Dirac delta function and power spectral 
density.  Power spectral density describes how much power is contained in a narrow 
bandwidth, typically 1 Hz. For example, for a power spectral density of 1.3 W/Hz 
in a 1-Hz bandwidth, there is 1.3 W of power. How much bandwidth does a pure 
sine wave require? The bandwidth of an ideal sine wave is 0 Hz. How do you 
represent a 1-W sine wave source (power concentrated in a single frequency) on a 
power spectral density graph (power per frequency, watts per hertz)?  The Dirac 
delta function is used to represent power concentrated in zero bandwidth.   

Later in Section 2, we introduce the Hilbert transform by presenting examples of 
real signals and analytic signals. The Hilbert transform is the key step to convert a 
real signal to an analytic signal (function). We then present a Fourier transform 
proof to derive the Hilbert transform. 

Section 3 covers digital signal processing for an SDR and illustrates the advantages 
of analytic signals, frequency translation, and phase shift. 

The Appendix presents a review of complex numbers, where we start off with a 
simple number line for a bottom-up approach to explain the properties of complex 
numbers. We explain how complex numbers are built up from real numbers. In 
digital signal processing, the multiplication property of complex numbers (analytic 
functions) provides for simple frequency translation and phase shift. 

2. Digital Signal Processing Introduction 

This section introduces the concepts and tools required to understand the Hilbert 
transform. Also covered are the Dirac delta function, single-sided power spectral 
density, double-sided power spectral density, Fourier transform, properties of real 
functions, and analytic signals.  

We begin by introducing the Dirac delta function and power spectral density. Power 
spectral density is used to explain the properties of complex exponentials and 
analytic functions. Analytic signals are a generalization of complex exponentials.  
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An analytic signal has the same frequency translation and phase shift properties as 
a complex exponential function.   

2.1 Dirac Delta Function 

The Dirac delta function is defined as the limit as the pulse’s height approaches 
infinity, 𝛿𝛿(𝑡𝑡) = lim

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡ℎ→∞
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒(𝑡𝑡), while the area under the pulse remains equal to 1 

(Fig. 1). An arrow is used to draw the unit area Delta function on a graph. The Dirac 
delta function in Eq. 1 only has a nonzero value when the argument inside equals 
0, when 𝑡𝑡 = 𝑡𝑡𝑜𝑜. The delta function in Eq. 2 occurs at 𝑡𝑡 = −4, and it has a height or 
strength of –3. The function 𝛿𝛿(𝑡𝑡 + 4) has unit area. We draw 𝑔𝑔(𝑡𝑡) as an arrow with 
a height of –3 on a graph. Since the Dirac delta function has all of its area 
concentrated as a point, we can use the delta function to represent the power 
contained in a sine wave (zero bandwidth) on a power spectral density graph. 

 

Fig. 1 Dirac delta function 

 

𝒇𝒇(𝒕𝒕) = 𝜹𝜹(𝒕𝒕 − 𝒕𝒕𝒐𝒐) 

  

(1) 

 

𝒈𝒈(𝒕𝒕) = −𝟑𝟑𝜹𝜹(𝒕𝒕 + 𝟒𝟒) (2) 

Width = 1/Height

He
ig

ht He
ig

ht

Ar
ea

= 
W

id
th

 •
 H

ei
gh

t =
 H

ei
gh

t •
 1

/H
ei

gh
t =

 1

He
ig

ht

Width = 0

He
ig

ht
 =

∞

Area = 1Area = 1

Area = 1

Area = 1
Dirac delta function

Area = 1

δ(t)

-8 4 8

-4

-4



 

Approved for public release; distribution is unlimited. 
3 

The probability distribution for a die simulation is presented in Fig 2. The 
probability distribution for an ideal die is 1/6 for die = 1, 2, 3, 4, 5, or 6. The 
simulation results are close to 1/6. The histogram in Fig. 2 shows discrete 
probability values. How do we represent the die values on a continuous number 
line? This is the same question as asking, How do we show a sine wave’s power 
concentrated at a single frequency on a power spectral density graph? On the 
continuous number line, shown in Fig. 3, the die probabilities are concentrated at 
the points (die values) x = 1, 2, 3, 4, 5, and 6. The delta functions show the 
probability density concentrated at the points. We will use delta functions to show 
power concentrated at a single frequency on a power spectral density graph. 
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Fig. 2 Die toss simulation 

 

Fig. 3 Delta functions show density concentrated at a point 
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2.2 Fourier Transform 

The Fourier transform converts a time function, 𝑓𝑓(𝑡𝑡), into the frequency domain, 
𝐹𝐹( 𝑗𝑗𝑗𝑗), (complex exponentials) as shown in Eq. 3. The functions 𝑓𝑓(𝑡𝑡) and 𝐹𝐹( 𝑗𝑗𝑗𝑗)  
are called a Fourier transform pair.  Figure 4 shows the Fourier transform squared, 
|𝐹𝐹( 𝑗𝑗𝑗𝑗)|2, for a square wave. The unit for power spectral density is W

Hz
. The unit W

Hz
 

tells us how much power is concentrated in a 1-Hz bandwidth. Power is voltage 
squared, 𝑃𝑃 = 𝑉𝑉2

𝑅𝑅
, and we generally set the resistance to 𝑅𝑅 = 1 Ω, so 𝑃𝑃 = 𝑉𝑉2. This 

means that the unit for the Fourier transform is volts RMS
√Hz

. The power spectral density 

is the Fourier transform squared, |𝐹𝐹( 𝑗𝑗𝑗𝑗)|2. On a decibel scale, 𝑃𝑃 = 10𝑝𝑝𝑙𝑙𝑔𝑔(𝑃𝑃) dB 
and 𝑃𝑃 = 20𝑝𝑝𝑙𝑙𝑔𝑔(𝑉𝑉) dB. On a decibel graph, the power spectral density in terms of 
W
Hz

 looks the same as  volts RMS
√Hz

. The only difference is the scale factor of 2 from  
𝑃𝑃 = 10𝑝𝑝𝑙𝑙𝑔𝑔(𝑃𝑃) and 𝑃𝑃 = 20𝑝𝑝𝑙𝑙𝑔𝑔(𝑉𝑉). 

𝑓𝑓(𝑡𝑡) =
1

2𝜋𝜋
� 𝐹𝐹( 𝑗𝑗𝑗𝑗)𝑒𝑒𝑗𝑗𝑗𝑗𝑡𝑡
+∞

𝑗𝑗=−∞

𝑑𝑑𝑗𝑗 ⟺ 𝐹𝐹( 𝑗𝑗𝑗𝑗) = � 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑗𝑗𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡
+∞

𝑡𝑡=−∞

 (3) 
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In this report, we use double-sided power spectral density graphs. Double-sided 
spectra are in terms of complex exponentials. The positive and negative frequencies 
in Fig. 4 show how much power is present in the positive frequency terms, 𝑒𝑒+𝑗𝑗2𝜋𝜋𝜋𝜋𝑡𝑡, 
and negative frequency terms, 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑡𝑡. Single-sided power spectral density 
combines the positive, 𝑒𝑒+𝑗𝑗2𝜋𝜋𝜋𝜋𝑡𝑡, and negative terms, 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑡𝑡, into cosines, since 

𝑐𝑐𝑙𝑙𝑝𝑝𝑐𝑐 = 𝑒𝑒𝑗𝑗𝑗𝑗+𝑒𝑒−𝑗𝑗𝑗𝑗

2
. Real functions, like 𝑐𝑐𝑙𝑙𝑝𝑝𝑐𝑐 and the square wave in Fig. 4, have a 

symmetric power spectral density graph. For real functions, the power spectral 
density for positive complex exponential, 𝑒𝑒+𝑗𝑗2𝜋𝜋𝜋𝜋𝑡𝑡, and negative complex 
exponential, 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑡𝑡, terms are equal (graph is a mirrored image across 0 Hz). In 
the following section, we make use of the properties of real functions to find the 
Hilbert transform. 

2.3 Hilbert Transform 

The Hilbert transform is a math function used to convert a real function into an 
analytic signal (function).  As illustrated in Section 2.3, an analytic signal has the 
same frequency and phase shift properties as a complex exponential function. We 
will show the advantages of using analytic signals in digital signal processing 
compared to real signals like 𝑔𝑔(𝑡𝑡) = 𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋𝑓𝑓𝑡𝑡). 

Figure 5 shows the frequency spectrum of the product of 2 complex exponentials. 
For 𝑓𝑓(𝑡𝑡) = 𝑒𝑒+𝑗𝑗2𝜋𝜋20𝑡𝑡 and 𝑔𝑔(𝑡𝑡) = 𝑒𝑒+𝑗𝑗2𝜋𝜋30𝑡𝑡, the product is ℎ(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡) =
𝑒𝑒+𝑗𝑗2𝜋𝜋20𝑡𝑡𝑒𝑒+𝑗𝑗2𝜋𝜋30𝑡𝑡 and ℎ(𝑡𝑡) = 𝑒𝑒+𝑗𝑗2𝜋𝜋50𝑡𝑡. We see a single spectral line at 50 Hz. 

 

 

Fig. 5 Frequency spectrum of 𝒆𝒆+𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒕𝒕 = 𝒆𝒆+𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒕𝒕 ∙ 𝒆𝒆+𝒋𝒋𝒋𝒋𝒋𝒋𝟑𝟑𝒋𝒋𝒕𝒕 
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Figure 6 shows the frequency spectrum for the product of 2 real cosine functions. 
For 𝑓𝑓(𝑡𝑡) = 𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋20𝑡𝑡) and 𝑔𝑔(𝑡𝑡) = 𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋30𝑡𝑡), the product ℎ(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡) =
𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋20𝑡𝑡)𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋30𝑡𝑡). The product results in sum and difference frequencies, 
𝑓𝑓 = 30 ± 20 Hz:  ℎ(𝑡𝑡) = 1

2
[𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋50𝑡𝑡) + 𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋10𝑡𝑡)].  In Fig. 6, we see 4 

power spectral density terms:  𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋50𝑡𝑡) = 1
2
�𝑒𝑒𝑗𝑗2𝜋𝜋50𝑡𝑡 + 𝑒𝑒−𝑗𝑗2𝜋𝜋50𝑡𝑡� and 

𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋10𝑡𝑡) = 1
2
�𝑒𝑒𝑗𝑗2𝜋𝜋10𝑡𝑡 + 𝑒𝑒−𝑗𝑗2𝜋𝜋10𝑡𝑡�.  

 

Fig. 6 Frequency spectrum of 𝒄𝒄𝒐𝒐𝒄𝒄(𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒕𝒕) + 𝒄𝒄𝒐𝒐𝒄𝒄(𝒋𝒋𝒋𝒋𝟏𝟏𝒋𝒋𝒕𝒕) = 𝒋𝒋𝒄𝒄𝒐𝒐𝒄𝒄(𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒕𝒕)𝒄𝒄𝒐𝒐𝒄𝒄(𝒋𝒋𝒋𝒋𝟑𝟑𝒋𝒋𝒕𝒕) 

We would like to convert 𝑓𝑓(𝑡𝑡) = 𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋20𝑡𝑡) and 𝑔𝑔(𝑡𝑡) = 𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋30𝑡𝑡) into 
complex exponentials to take advantage of the multiplication property illustrated in 
Fig. 5. In Fig. 5 there is only a single frequency term, whereas in Fig. 6 there are 
sum and difference frequency terms. 

A very good approximation to the ideal Hilbert transform is a low-pass finite 
impulse response (FIR) filter. In Fig. 7, we show a real signal, 𝑓𝑓(𝑡𝑡) = 𝑐𝑐𝑙𝑙𝑝𝑝(2𝜋𝜋20𝑡𝑡), 
converted to an analytic signal using a 255-tap Hilbert transform low-pass filter. 
For an ideal Hilbert transform, there would be no signal present at –20 Hz. We then 
use a complex multiply to frequency translate the 20-Hz signal to 50 Hz.  
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Fig. 7 Hilbert transform applied to a real signal, 𝒄𝒄𝒐𝒐𝒄𝒄(𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒕𝒕), and used to convert a real 
signal to an analytic signal; complex multiply is then used to create a single frequency term at 
20 + 30 Hz. 

Figure 8 shows the 20-Hz signal frequency translated to 50 Hz, with a very small 
signal present at +10 Hz (–48 dBm, which is 76 dB lower than the carrier signal at 
+28 dBm). The power spectral density graph in Fig. 8 shows a single frequency 
term at 50 Hz and an insignificant term at +10 Hz. 

 

Fig. 8 Frequency spectrum from block diagram in Fig. 7 showing a single frequency term 
at 20 + 30 Hz 

An analytic signal has only positive frequency, complex exponential terms, 𝑒𝑒+𝑗𝑗2𝜋𝜋𝜋𝜋𝑡𝑡, 
in its power spectral density graph. Figure 8 gives an example of an analytic signal. 
The power spectral density for negative frequencies is so small that it can be ignored 
(power at –20 Hz is orders of magnitude smaller than the power present at 20 Hz). 
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We present a derivation showing how to convert a real signal to an analytic signal. 
An analytic signal is more general than the complex exponentials discussed 
previously. An analytic signal has the same frequency translation and phase shift 
properties as a complex exponential. We will derive the Hilbert transform filter to 
convert a real signal to an analytic signal. Figure 9 compares the power spectral 
density properties for real and analytic signals. Equations 4–9 cover the derivation 
for the Hilbert transform. The results are summarized in Fig. 10. 

Figure 9 shows that a real signal, 𝑅𝑅( 𝑗𝑗𝑗𝑗), has a symmetric power spectral density. 
We need to find the spectrum for the analytic signal, 𝐴𝐴( 𝑗𝑗𝑗𝑗), which consists of only 
positive frequency terms. Equation 4 defines the Fourier transform pair for the real 
signal. A real signal has the Fourier transform property in Eq. 5. In Eq. 6, we 
calculate the analytic signal, 𝐴𝐴( 𝑗𝑗𝑗𝑗), in terms of the real signal, 𝑅𝑅( 𝑗𝑗𝑗𝑗). In Eq. 7, 
we use the unit step function to simplify Eq. 6. The sign function, or signum 
function, from Eq. 8 is substituted to simplify again. In Eq. 9, we use the Fourier 
transform pair from Eq. 8 to simply the analytic function. 

 
Fig. 9 Real and analytic signals 

𝑟𝑟(𝑡𝑡) ⟺ 𝑅𝑅( 𝑗𝑗𝑗𝑗) Fourier transform pair for a real signal. (4) 
 

𝑅𝑅(−𝑗𝑗𝑗𝑗) = 𝑅𝑅∗( 𝑗𝑗𝑗𝑗)  
Real signals have the Fourier transform 
property, where * = complex conjugate. (5) 

 

𝐴𝐴(𝑗𝑗𝑗𝑗) = �
2𝑅𝑅( 𝑗𝑗𝑗𝑗) 𝑗𝑗 > 0
𝑅𝑅( 𝑗𝑗𝑗𝑗) 𝑗𝑗 = 0
0 𝑗𝑗 < 0

 Analytic signal, 𝐴𝐴( 𝑗𝑗𝑗𝑗), in terms of real 
signal, 𝑅𝑅( 𝑗𝑗𝑗𝑗). (6) 

𝑎𝑎(𝑡𝑡) ⟺ 𝐴𝐴( 𝑗𝑗𝑗𝑗) Analytic signal Fourier transform pair. 
 

𝐴𝐴(𝑗𝑗𝑗𝑗) = 2𝑝𝑝( 𝑗𝑗𝑗𝑗)𝑅𝑅( 𝑗𝑗𝑗𝑗) 
𝐴𝐴(𝑗𝑗𝑗𝑗) = [1 + 𝑝𝑝𝑔𝑔𝑠𝑠( 𝑗𝑗𝑗𝑗)]𝑅𝑅( 𝑗𝑗𝑗𝑗) Simplify Eq. 6. (7) 

 

Analytic Signal

Positive Frequency TermsNegative Frequency Terms

Power Spectral Density

Real Signal

Real Signal or Real Function 
has a symmetric power 
spectral density
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1
𝜋𝜋𝑡𝑡

⟺ −𝑗𝑗𝑝𝑝𝑔𝑔𝑠𝑠( 𝑗𝑗𝑗𝑗) 
𝑗𝑗
𝜋𝜋𝑡𝑡

⟺ 𝑝𝑝𝑔𝑔𝑠𝑠( 𝑗𝑗𝑗𝑗) 

Fourier transform pair  
for signum function. (8) 

 

𝑎𝑎(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) + 𝐹𝐹−1{𝑝𝑝𝑔𝑔𝑠𝑠( 𝑗𝑗𝑗𝑗)}⨂𝐹𝐹−1{𝑅𝑅( 𝑗𝑗𝑗𝑗)} 
𝑎𝑎(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) + 𝐹𝐹−1{𝑝𝑝𝑔𝑔𝑠𝑠( 𝑗𝑗𝑗𝑗)}⨂𝑟𝑟(𝑡𝑡) 
𝑎𝑎(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) + 𝑗𝑗 � 1

𝜋𝜋𝑡𝑡
⨂𝑟𝑟(𝑡𝑡)�  (see Eq. 8) 

𝑎𝑎(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) + 𝑗𝑗�̂�𝑟(𝑡𝑡) where �̂�𝑟(𝑡𝑡) = 1
𝜋𝜋𝑡𝑡
⨂𝑟𝑟(𝑡𝑡) 

Simplify Eq. 8,  
 
where ⨂ operation 
is convolution. 
 

 

(9) 

 
 

 
Fig. 10 Real-to-analytic signal block diagram 

 
A block diagram showing the operations to convert a real signal to an analytic 
signal is found in Fig. 10. The Hilbert signal, �̂�𝑟(𝑡𝑡), is the Hilbert transform of 𝑟𝑟(𝑡𝑡). 
In digital signal processing, the Hilbert transform is typically implemented as a 
low-pass FIR filter (Fig. 11).   

 

 
Fig. 11 Low-pass finite impulse response (FIR) Hilbert transform 
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A 255-tap low-pass Hilbert transform FIR filter was simulated to create the power 
spectral density graph in Fig. 12. A square wave and its Hilbert transform are shown 
in the time domain. A block diagram shows the steps required to convert a real 
signal to an analytic signal. The power spectral density plots compare the real 
square wave signal to the square wave analytic signal. The analytic signal has 
removed the negative frequency terms. The largest negative frequency term is 
56 dB down from the input real signal. 

Analytic signals are a generalization of complex exponentials. Analytic signals 
have the very useful frequency and phase shift properties of complex exponentials. 
The simple frequency translation and phase shift properties of analytic signals make 
them very useful for digital signal processing. 
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Fig. 12 Hilbert transform and analytic signals 
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As an example, a high-frequency (1–30 MHz) software-defined radio (SDR) is 
illustrated in Fig. 13. We have shown a double conversion analog front end. With 
a 120 Msample/s, 14-bit analog-to-digital converter (ADC), we could connect the 
ADC directly to the antenna. Analog front-end radios still have a higher dynamic 
range than completely digital SDRs. The SDR in Fig. 13 provides a 14-bit ADC 
running at 2 times oversampling. The oversampling provides about 3 more decibels 
of dynamic range. The sampling frequency for the digital I/Q output is 
20 Msamples/s with about 87 dB of digital dynamic range. Analog automatic gain 
control (not shown) could provide more useable dynamic range. 
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Fig. 13 Example high-frequency double radio frequency conversion, digital software-defined radio 
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3. Digital Signal Processing in a Software-Defined Radio  

Figure 14 illustrates an example of an SDR architecture for a high-frequency 
receiver, with a double conversion analog front end. ADCs have limited dynamic 
range. As ADCs have improved, the analog-to-digital conversion step has moved 
closer to the antenna. Analog front ends currently have better dynamic range and 
overload protection. Figure 14 illustrates a 40 Msample/s, 14-bit ADC. For the 
10-MHz intermediate frequency (IF); this is 2 times oversampling. 

 

 

Fig. 14 Example upper and lower sideband software-defined radio 

 
Figure 15 shows the power spectral density for the received signal. We use Dirac 
delta functions to show power concentrated at single frequencies. The upper 
sideband consists of 2 tones. The lower sideband has a single tone. The digital block 
in Fig. 14 converts the real signal to an analytic signal. We use a complex tone 
(complex exponential function) to convert the center frequency to 0 Hz (DC).  
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Fig. 15 Received power spectral density 

A second Hilbert transform in the digital demodulation block is used to separate 
the upper and lower sidebands from the complex baseband signal.  

Figure 14 illustrates the usefulness of the Hilbert transform to 1) convert a real 
signal to an analytic signal and 2) demodulate single sideband. Figure 16 shows the 
real power spectral density for the upper sideband, and Fig. 17 shows the real power 
spectral density for the lower sideband. Since the power spectral densities are real 
signals, upper and lower sideband signals can drive a speaker. 

The analog hardware in Fig. 14 is fixed. It can be upgraded with new analog 
hardware. The digital blocks in the example SDR architecture are software. Signal 
processing and filtering algorithms can be upgraded with new software.  
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Fig. 16 Upper sideband spectrum 

 

 

 

Fig. 17 Lower sideband spectrum 
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Figure 18 compares frequency shift keying (FSK) and Feher FSK.1–6 Feher 
modulation replaces the sharp pulse transitions in frequency shift keying with half-
cycle raised cosine waveforms. As illustrated in the simulation in Fig. 18 (see the 
Comm page of the VisSim website7 for more information about the simulation tool), 
Feher modulation uses half-cycle raised cosine waveforms to create smooth 
transitions between symbols. With an SDR architecture, we could easily upgrade 
FSK to Feher FSK with a new software program.  

 

 

Fig. 18 Frequency shift keying and Feher frequency shift keying 
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An example of an SDR transmitter block diagram is shown in Fig. 19. Here, we 
illustrate a software upgrade from standard quadrature amplitude modulation 
(QAM) to Feher QAM1–6. Feher QAM provides improved radio performance at the 
expense of some additional signal processing. As illustrated, Feher modulation 
smooths out the sharp symbol transitions, reducing the bandwidth required. Feher 
modulation also has much-improved frequency sidelobes as illustrated in Fig. 20. 

 

 

Fig. 19 Quadrature amplitude modulation software-defined radio example 
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Fig. 20 Power spectral density for 16 QAM and Feher 16 QAM 
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4. Conclusion 

We present an introduction to digital signal processing for an SDR. We illustrate 
the advantages of analytic signals for frequency translation and phase shift. Two 
SDR algorithm (software) upgrade examples are provided.  
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Appendix. Review of Complex Numbers
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In this Appendix, we present a review of complex numbers. We start with a simple 
number line for a bottom-up approach to explain the properties of complex numbers 
and then illustrate that complex numbers are built from real numbers. In digital 
signal processing, the multiplication property of complex numbers (analytic 
functions) provides for simple frequency translation and phase shift. 

We will take a geometric approach using distance from a number line and build up 
to the complex plane. The bottom-up approach will review (–1)(–1) = +1 to help 
bridge the gap to complex numbers, where 𝑖𝑖 = √−1, and 𝑖𝑖0 = +1, 𝑖𝑖1 = 𝑖𝑖,  
𝑖𝑖2 = −1,  𝑖𝑖3 = −𝑖𝑖 , and   𝑖𝑖4 = +1. The periodic behavior of 𝑖𝑖𝑛𝑛 is a more general 
result than +1 = (−1)2. Mathematicians use 𝑖𝑖 = √−1 for the imaginary number. 
Since 𝑖𝑖(𝑡𝑡) is the traditional variable for electrical current, electrical engineers use 
𝑗𝑗 = √−1. 

A.1 Number Lines and Planes 

The number line in Fig. A-1 shows positive numbers 0, 1, 2, 3, 4, •••. A number 
line showing directions, East and West, is used to bridge the gap to negative 
numbers. In measuring distance on a number line, we show that (–1)(–1) = +1, 
negative 1 times negative 1 equals a positive 1. Intuitively, the equation  
+1 = (–1)(–1) appears incorrect. With a 2-D plane, also called the Cartesian plane, 
we provide a simple geometric illustration to show that +1 = (–1)(–1) is a special 
case from the complex plane. 

  

Fig. A-1 Number line 

Distance is the measurement length from point a on the number line to point b. 
Distance is a positive number and does not indicate direction. Distance, d = | b – a |, 
is found in Eq. A-1, where the |     | operation is the absolute value function. For 
example, | 5 | = 5 and | –5 | = 5. The distance from point a on the number line to 
point b is the same as the distance from b on the number line to point a. 

 d = | b – a |     Distance from point a to point b (A-1) 

The distance from 2 to 9, as shown in Fig. A-1, is d = | b – a | = | 9 – 2 | = 7. 

The distance from 7 to 3 is d = | 3 – 7 | = | 3 – 7 | = 4. 

The directional distance is defined as Δ = b – a in Eq. A-2. For directional distance, 
the sign of Δ tells us if we are moving on the number line to the right or to the left. 

0 1 2 3 4 5 6 7 8 9 10

What is the distance from 2 to 9 on the number line?
a b
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For example, the directional distance from 8 to 3 is Δ = 3 – 8 = –5. The distance  
–5 tells us we are moving 5 steps to the left or 5 steps to the West. The directional 
distance from 4 to 9 is Δ = 9 – 4 = 5. The distance 5 tells us we are moving 5 steps 
to the right or East. 

 Δ = b – a      Directional Distance (A-2) 

In Fig. A-2, we have borrowed the compass points East and West for left and right 
directions. How do we compute the distance from point a to b in Fig. A-2? Point a 
is located at 5 East and point b is located at 4 West. From Eq. A-1, we have distance 
d = | b – a |. 5 East is 5 steps from 0, and 4 West is 4 steps from 0. The total distance 
is then 5 + 4 = 9 in Eq. A-3. The point b at 4 West is –4 in the East direction, so we 
may rewrite Eq. A-3 as Eq. A-4. From a distance and geometry point of view, we 
have shown that –(–4), minus –4, is the same thing as +4. 

 

Fig. A-2 East–West number line 

 d = | b – a | = | 5 East  –  4 West| = 9. (A-3) 

 d = | b – a | = | 5 East  –  (-4) East| = 9. (A-4) 

For directional distance a negative is used to indicate direction to the left and 
positive direction to the right. Figure A-2 used East and West for directions. In 
Fig. A-3, we use negative numbers for the West direction and positive numbers for 
the East direction. The distance between points a and b in Fig. A-3 is found in 
Eq. A-5. We have | –3  –  2| = | –5| = 5. In Fig. A-3, we can clearly see the distance 
from a = +2 to b = –3 is 5 units.   

 

Fig. A-3 Positive and negative number line (Example 1) 

 d = | b – a | = | –3  –  2| = 5. (A-5) 

What is the difference between minus 2 and negative 2? Negative 2 is located at 2 
steps (to the left) from 0 on the number line. The math operation minus 2 means to 
move 2 steps back on the number line. For minus –2, we move 2 steps backwards 
from –2, which is the same as moving 2 steps forward. From a number line point 
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of view, the operation minus  –2 can be simplified to –(–2) = (–1)(–1)2 = 2 
(negative 1 times a negative 1 = + 1). 

Here, we continue the discussion of minus –n (where –n is a negative number). We 
will use distance, which is defined as a positive number, to explain what minus –n 
means. In Fig. A-4, we have point a at –5, which is 5 steps to the left of zero. Point 
b is 3 steps to the right of 0. The total distance is 5 + 3 = 8. Figure A-4 and  
Eq. A-5 show from a geometry point of view that minus –5 is the same thing as +5.  

From the positive and negative number line in Fig. A-4, we have shown that –5 is 
5 steps from 0 and minus –5 is equivalent to moving 5 steps to the right.  Starting 
at a = –5, we move 5 steps to 0 and then move 3 more steps to b = +3.  The total 
distance is 8 steps.  The example in Fig. A-4 illustrates minus -n (-n is a negative 
number) is the same as +n. 

 

Fig. A-4 Positive and negative number line (Example 2) 

 d = | b – a | = | +3  –  (–5) | = 8. (A-5) 

The East-West or positive and negative numbers for a number line are a notation. 
We need to know the “rules” for addition and subtraction to compute distance in 
Eq. A-1. We will extend the number line in Fig. A-4 to 2 dimensions to create the 
Cartesian plane. We can then use positive and negative numbers for the x-axis and 
y-axis or we can use the cardinal compass points. The 2-D graph allows us to bridge 
from real to complex numbers. 

In Figs. A-5 and A-6, we show that a number line can be extended into 
2 dimensions. The point P can be represented in Cartesian space as P = (x, y) = 
(–1.5, –0.75) or in terms of compass points P = (x, y) = (1.5W, 0.75S). Polar 
coordinates are another way of representing points on a 2-D graph.  
Eq. A-6 shows how to convert rectangular coordinates in terms of (x, y) into polar 
coordinates (r, θ). As we will show in the next section, the polar coordinates for the 
Cartesian plane in Fig. A-7 and the complex number plane in Fig. A-8 are 
equivalent. What makes complex numbers useful for digital signal processing are 
the frequency translation and phase shift properties of complex exponential 
functions. 

 (𝑟𝑟,𝜃𝜃) = ��𝑥𝑥2 + 𝑦𝑦2 , 𝑡𝑡𝑎𝑎𝑠𝑠−1�𝑦𝑦𝑥𝑥��. (A-6) 

 

+1

Negative Positive

-1-2 +2 +3 +4 +5 +6 +7-3-4-5-6-7-8 +8

a b
0



 

 

27 

Approved for public release; distribution is unlim
ited. 

 
 
 

 
 Fig. A-5   Cartesian graph Fig. A-6   Compass point graph 
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Fig. A-7   Cartesian graph 
 

Fig. A-8   Complex number graph 
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(𝑥𝑥,𝑦𝑦) = (𝑟𝑟𝑐𝑐𝑙𝑙𝑝𝑝𝜃𝜃, 𝑟𝑟𝑝𝑝𝑖𝑖𝑠𝑠𝜃𝜃) where 
radius is 𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 
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A.2 Square Root and Complex Numbers 

In Section A.1, number lines and planes introduced the connection between 2-D 
Cartesian space and complex planes. We found that the polar coordinate form is the 
same for the Cartesian space and the complex plane. In this section, we will start 
with the square root function and define imaginary numbers. Polar coordinates are 
then used to derive the complex exponential function. The complex exponential 
function’s frequency translation and phase shift properties are very useful for digital 
signal processing. 

The square root function is graphed in Fig. A-9. For positive numbers, the square 
root function is straightforward. What number squared equals x? For example,  
12 = 1, 22 = 4, and 32 = 9. What number squared equals negative 1? We observe 
for the square root function 𝑦𝑦2 = 𝑥𝑥. We will define 𝑗𝑗2 = −1. This fits the pattern 
shown in Fig. A-8. With 𝑗𝑗2 = −1, the square root gives 𝑗𝑗 = √−1. In Figs. A-5 and 
A-7, we have graphed real numbers. The real numbers are ••• –3, –2, –1, 0, +1, +2, 
+3, •••. The number line defined in terms of 𝑗𝑗 = √−1 does not appear to have a 
connection to real numbers. The numbers ••• –3j, –2j, –1j, 0, +1j, +2j, +3j, ••• are 
called imaginary numbers. If we add 2 real numbers, 5 + 7 = 12, the result is a real 
number. If we add a real number to an imaginary number, 3 + 2j = 3 + 2j, we cannot 
combine the 3 and the 2 into a single number. The numbers 3 and 2j are called 
linearly independent. Linearly independent means we cannot reduce 3 + 2j into a 
simpler number. The Cartesian graph in Fig. A-5 also demonstrates linear 
independence. We need an x position and a y position to graph a point on the graph. 
We cannot take the point (x, y) = (1, 2) and plot 3 on the graph. 

 

 
Fig. A-9 Square root of x 
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The number 3 + 2j is called a complex number. A complex number (a + jb) contains 
a real part, a, and an imaginary part, jb. The numbers a and b are both real numbers. 
The imaginary constant j separates the real and imaginary parts. In Fig. A-8, we use 
the linear independence property to graph the real numbers on the x-axis and the 
imaginary numbers on the y-axis. Polar coordinates in Eq. A-7 are multivalued.  
More on the properties of complex numbers in the following sections. 

 (𝑟𝑟,𝜃𝜃) = (𝑟𝑟, (𝜃𝜃 + 2𝑘𝑘𝜋𝜋) )    where 𝑘𝑘 is an integer. (A-7) 

Figures A-7 and A-8 show that polar coordinates connect the Cartesian plane to 
complex numbers in the complex plane. The (𝑥𝑥,𝑦𝑦) values represent a coordinate in 
the Cartesian plane as illustrated in Fig. A-7. The complex number 𝑥𝑥 + 𝑗𝑗𝑦𝑦 
represents a point in the complex plane as shown in Fig. A-8. The values for x and 
y in the Cartesian coordinate notation (𝑥𝑥, 𝑦𝑦) in Eq. A-8 and complex number 
notation 𝑥𝑥 + 𝑗𝑗𝑦𝑦 in Eq. A-9 are the same. The polar equation form in Eq. A-10 shows 
how to convert from Cartesian and complex numbers to polar form. Next, we show 
the connection between the complex exponential in Eq. A-11 and polar equation 
form in Eq. A-10. In digital signal processing, the properties of the complex 
exponential form provide for simple frequency translation and phase shift. 

 

Cartesian Plane 

(𝑥𝑥,𝑦𝑦) = 𝑥𝑥�⃗�𝑥 + 𝑦𝑦�⃑�𝑦 where 

�⃗�𝑥  is the unit vector for the  
x-coordinate 
�⃗�𝑦 is the unit vector for the   
y-coordinate 

(A-8) 

 
Complex Plane 

𝑥𝑥 + 𝑗𝑗𝑦𝑦 where   𝑥𝑥 is the real part of the complex number 
𝑗𝑗𝑦𝑦 is imaginary part of the complex number (A-9) 

 
Polar Coordinates 

(𝑥𝑥,𝑦𝑦) = (𝑟𝑟𝑐𝑐𝑙𝑙𝑝𝑝𝜃𝜃, 𝑟𝑟𝑝𝑝𝑖𝑖𝑠𝑠𝜃𝜃) where 
radius is 𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 
angle is 𝜃𝜃 = 𝑡𝑡𝑎𝑎𝑠𝑠−1 �𝑦𝑦

𝑥𝑥
� 

(A-10) 

𝑥𝑥 + 𝑗𝑗𝑦𝑦 = 𝑟𝑟(𝑐𝑐𝑙𝑙𝑝𝑝𝜃𝜃 + 𝑗𝑗𝑝𝑝𝑖𝑖𝑠𝑠𝜃𝜃) complex form (A-11) 
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To show the connection between polar coordinates and the complex exponential, 
we start with Fig. A-7, r = 1 (the unit circle). In Eq. A-11, we let the radius r = 1, 
as shown in Eq. A-12. Equations A-13 through A-15 show the infinite series for 
𝑝𝑝𝑖𝑖𝑠𝑠𝜃𝜃, 𝑐𝑐𝑙𝑙𝑝𝑝𝜃𝜃, and 𝑒𝑒𝑥𝑥, respectively. In Eq. A-16, we expand 𝑒𝑒𝑥𝑥 with 𝑥𝑥 = 𝑗𝑗𝜃𝜃. We find 
the infinite series in Eq. A-17 for sine and cosine, as shown in Eq. A-18. In  
Eq. A-19, we present the Euler form for a complex exponential. 

 

 𝑥𝑥 + 𝑗𝑗𝑦𝑦 = (𝑐𝑐𝑙𝑙𝑝𝑝𝜃𝜃 + 𝑗𝑗𝑝𝑝𝑖𝑖𝑠𝑠𝜃𝜃) . (A-12) 

 
 𝑝𝑝𝑖𝑖𝑠𝑠𝜃𝜃 = 𝜃𝜃 − 𝜃𝜃3

3!
+ 𝜃𝜃5

5!
− 𝜃𝜃7

7!
+ ⋯ (A-13) 

 
 𝑐𝑐𝑙𝑙𝑝𝑝𝜃𝜃 = 1 − 𝜃𝜃2

2!
+ 𝜃𝜃4

4!
− 𝜃𝜃6

6!
+ ⋯ (A-14) 

 
 𝑒𝑒𝑥𝑥 = 1 + 𝑥𝑥 + 𝑥𝑥2

2!
+ 𝑥𝑥3

3!
+ 𝑥𝑥4

4!
+ ⋯ (A-15) 

 
   𝑒𝑒𝑥𝑥 = 1 + 𝑥𝑥 + 𝑥𝑥2

2!
+ 𝑥𝑥3

3!
+ 𝑥𝑥4

4!
+ ⋯ with  𝑥𝑥 = 𝑗𝑗𝜃𝜃. (A-16)  

 
 
 
𝑒𝑒𝑗𝑗𝜃𝜃 = 1 + 𝑗𝑗𝜃𝜃 + (𝑗𝑗𝜃𝜃)2

2!
+ (𝑗𝑗𝜃𝜃)3

3!
+ (𝑗𝑗𝜃𝜃)4

4!
+ (𝑗𝑗𝜃𝜃)5

5!
+ (𝑗𝑗𝜃𝜃)6

6!
⋯ =    

�1 + (𝑗𝑗𝜃𝜃)2

2!
+ (𝑗𝑗𝜃𝜃)4

4!
+ (𝑗𝑗𝜃𝜃)6

6!
+ ⋯�+ �𝑗𝑗𝜃𝜃 + (𝑗𝑗𝜃𝜃)3

3!
+ (𝑗𝑗𝜃𝜃)5

5!
+ ⋯�  (A.17) 

�1 − 𝜃𝜃2

2!
+ 𝜃𝜃4

4!
− 𝜃𝜃6

6!
+ ⋯�+ 𝑗𝑗 �𝜃𝜃 − 𝜃𝜃3

3!
+ 𝜃𝜃5

5!
− 𝜃𝜃7

7!
⋯�  

 

where 𝑗𝑗 = √−1, and 𝑖𝑖0 = +1, 𝑗𝑗1 = 𝑗𝑗, 𝑗𝑗2 = −1,  𝑗𝑗3 = −𝑖𝑖 , and 

  𝑗𝑗4 = +1 and   𝑗𝑗5 = 𝑗𝑗𝑗𝑗4 = 𝑗𝑗 

 
 
 

(𝑐𝑐𝑙𝑙𝑝𝑝𝜃𝜃 + 𝑗𝑗𝑝𝑝𝑖𝑖𝑠𝑠𝜃𝜃) = 1 − 𝜃𝜃2

2!
+ 𝜃𝜃4

4!
− 𝜃𝜃6

6!
+ ⋯𝑗𝑗 �𝜃𝜃 − 𝜃𝜃3

3!
+ 𝜃𝜃5

5!
− 𝜃𝜃7

7!
+ ⋯�. (A-18) 

 
 𝑒𝑒𝑗𝑗𝜃𝜃 = (𝑐𝑐𝑙𝑙𝑝𝑝𝜃𝜃 + 𝑗𝑗𝑝𝑝𝑖𝑖𝑠𝑠𝜃𝜃). (A-19) 
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In complex exponentials, simple multiplication is used for frequency translation as 
illustrated in Eq. A-20. Frequency translation only results in a single frequency 
term. For real sine and cosine functions, frequency translation results in sum and 
difference terms (2 terms). Sine and cosine functions require an additional high-
pass or low-pass filter to separate the sum or difference term. Phase shift in complex 
exponentials is also a simple multiplication in Eq. A-21. Phase shift in real sines 
and cosines is too difficult to work with. 

 

𝑓𝑓(𝑡𝑡) = 𝑒𝑒𝑗𝑗�2𝜋𝜋𝜋𝜋1 𝑡𝑡�, and 𝑔𝑔(𝑡𝑡) = 𝑒𝑒𝑗𝑗�+2𝜋𝜋𝜋𝜋2 𝑡𝑡� 

𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡) = 𝑒𝑒𝑗𝑗�2𝜋𝜋𝜋𝜋1 𝑡𝑡� = 𝑒𝑒𝑗𝑗�−2𝜋𝜋𝜋𝜋2 𝑡𝑡� = 𝑒𝑒𝑗𝑗�2𝜋𝜋�𝜋𝜋1 +𝜋𝜋2 �𝑡𝑡� Frequency translation 𝑓𝑓1 + 𝑓𝑓2   (A-20) 

𝑓𝑓(𝑡𝑡) = 𝑒𝑒𝑗𝑗�2𝜋𝜋𝜋𝜋1 𝑡𝑡�, and 𝑔𝑔(𝑡𝑡) = 𝑒𝑒𝑗𝑗𝑗𝑗 

𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡) = 𝑒𝑒𝑗𝑗�2𝜋𝜋𝜋𝜋1 𝑡𝑡�𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑒𝑒𝑗𝑗�2𝜋𝜋𝜋𝜋1 𝑡𝑡+𝑗𝑗�        Phase shift by 𝑐𝑐 radians (A-21) 

 

In steady-state AC circuits, we work with rotating vectors called phasors. Equation 
A-22 shows the general form for a phasor. The Laplace transform variable s is 
closely related to a rotating vector. 

 

𝑓𝑓(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑗𝑗�2𝜋𝜋𝜋𝜋1 𝑡𝑡+𝑗𝑗� where A is a complex constant, 𝐴𝐴 = 𝑅𝑅𝑒𝑒𝑗𝑗𝜃𝜃 (A-22) 

 

From Fig. A-10 and Eq. A-19, we can calculate the ( 𝑗𝑗)𝑛𝑛 in Eq. A-23. We show in 
Fig. A-10 the sequence 𝑗𝑗𝑛𝑛 and illustrate the more general case of  
(–1)(–1) = 1. The magnitude stays a constant 1. The phase rotates 𝑠𝑠 𝜋𝜋

2
 radians  

(0, 𝜋𝜋
2

,𝜋𝜋, 3𝜋𝜋
2

, 2𝜋𝜋⋯ ). Each multiplication of 𝑒𝑒𝑗𝑗
𝜋𝜋
2  adds 𝜋𝜋

2
 radians. For complex 

exponential multiplication, the magnitudes are multiplied and the phase angles 
added. 

 

𝑗𝑗 = �𝑐𝑐𝑙𝑙𝑝𝑝
𝜋𝜋
2

+ 𝑗𝑗𝑝𝑝𝑖𝑖𝑠𝑠
𝜋𝜋
2
� = 𝑒𝑒𝑗𝑗

𝜋𝜋
2  

(A-23) 
𝑗𝑗𝑛𝑛 = �𝑒𝑒𝑗𝑗

𝜋𝜋
2�

𝑛𝑛
= 𝑒𝑒𝑗𝑗𝑛𝑛

𝜋𝜋
2 = 1, 𝑒𝑒𝑗𝑗

𝜋𝜋
2 , 𝑒𝑒𝑗𝑗𝜋𝜋, 𝑒𝑒𝑗𝑗

3
2𝜋𝜋, 𝑒𝑒𝑗𝑗2𝜋𝜋 ⋯ = 1, 𝑗𝑗, −1, −𝑗𝑗, 1,⋯ 
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Fig. A-10 Complex multiplication
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